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Abstract: Incident surface shortwave radiation (ISR) is a key parameter in Earth’s surface radiation
budget. Many reanalysis and satellite-based ISR products have been developed, but they often
have insufficient accuracy and resolution for many applications. In this study, we extended our
optimization method developed earlier for the MODIS data with several major improvements for
estimating instantaneous and daily ISR and net shortwave radiation (NSR) from Visible Infrared
Imaging Radiometer Suite observations (VIIRS), including (1) an integrated framework that combines
look-up table and parameter optimization; (2) enabling the calculation of net shortwave radiation
(NSR) as well as daily values; and (3) extensive global validation. We validated the estimated ISR
values using measurements at seven Surface Radiation Budget Network (SURFRAD) sites and 33
Baseline Surface Radiation Network (BSRN) sites during 2013. The root mean square errors (RMSE)
over SURFRAD sites for instantaneous ISR and NSR were 83.76 W/m2 and 66.80 W/m2, respectively.
The corresponding daily RMSE values were 27.78 W/m2 and 23.51 W/m2. The RMSE at BSRN sites
was 105.87 W/m2 for instantaneous ISR and 32.76 W/m2 for daily ISR. The accuracy is similar to the
estimation from MODIS data at SURFRAD sites but the computational efficiency has improved by
approximately 50%. We also produced global maps that demonstrate the potential of this algorithms
to generate global ISR and NSR products from the VIIRS data.

Keywords: VIIRS; Incident shortwave radiation; net shortwave radiation; optimization

1. Introduction

Incident surface shortwave radiation (ISR) is a critical parameter in Earth’s surface radiation
budget. It determines the incoming energy source for the Earth’s surface and drives energy, ecological,
and hydrological dynamics [1–6]. Surface net shortwave radiation (NSR) largely determines the total
net irradiance at the Earth’s surface, which regulates most biological and physical processes at the
surface [2,3]. Because of its importance, many regional and global observation networks have been
established, such as the Surface Radiation Budget Network (SURFRAD) [7]. However, because of the
limited spatial coverage and representativeness, site-based radiation observations have drawbacks
when used in many regional and global applications. Reanalysis products are another source of
radiation information, and nearly all reanalysis data include radiation data at the Earth’s surface, such as
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the Japanese 55-year Reanalysis (JRA-55) [8], the ERA-5 [9], the Modern-Era Retrospective analysis
for Research and Applications (MERRA) [10], the National Centers for Environmental Prediction
(NCEP) [11,12], and the Climate Forecast System Reanalysis (CFSR) [13].

Many satellite-derived radiation products have been published and are widely used, such as
the Clouds and the Earth’s Radiant Energy System (CERES) [14], the International Satellite Cloud
Climatology Project (ISCCP) [15], the Global Energy and Water Exchanges (GEWEX) [16], Moderate
Resolution Imaging Spectroradiometer (MODIS) MCD18 [17], the Global LAnd Surface Satellite
(GLASS) [18], and the Satellite Application Facility on Climate Monitoring (CM SAF) [19]. However,
most of the existing products have a relatively coarse spatial resolution, usually one or one-half of a
degree, which limits the capacity to quantify regional and local changes. The World Meteorological
Organization (WMO) requires a spatial resolution of one kilometer in specific applications such as
agricultural meteorology. Moreover, the accuracy of the existing products is still far from the uncertainty
requirements. Many studies have assessed the widely used satellite products, finding RMSEs are
usually 80–150 W/m2 at hourly/3-hourly temporal scales [20–22]. WMO requires a daily uncertainty
(Root Mean Square Error, RMSE) of less than 20 W/m2 for the Numerical Weather Prediction (NWP)
application (https://www.wmo-sat.info/oscar/variables/view/50), while all four widely used global
radiation products have greater uncertainty than 20 W/m2 from extensive validation [21,23].

Satellite-derived ISR products usually are produced using four groups of algorithms: parameterization
methods [24–29], look-up-table (LUT)-based methods [30–33], direct radiative transfer calculation
methods [14,34], and machine-learning methods [35–43]. Most of the NSR estimation algorithms link
top of atmosphere (TOA) reflectance directly with NSR using radiative transfer simulations [44–47],
while some algorithms calculate NSR using downward and upward components [48] or ISR and land
surface albedo. Many of the ISR and NSR algorithms inherit uncertainties from the input data processing
and model which still cannot meet the accuracy requirements.

Most algorithms provide instantaneous ISR results, which are calculated at the satellite overpass
time. In energy balance studies, daily integrated ISR results are more frequently required. Kim and
Liang [46] calculated daily integrated NSR using a sinusoidal model from instantaneous values.
Wang et al. [47] extended the model to Landsat data with the assumption of constant atmospheric
conditions during one day. Wang and Liang [49] then refined the method for NASA’s Earth Observing
System’s MODIS data without the requirement for additional atmospheric water vapor data input.
Mateos et al. [50] validated daily UV surface irradiance from the Ozone Monitoring Instrument (OMI)
at 14 ground-based stations.

We recently developed an optimization algorithm for estimating instantaneous ISR from MODIS
data [51], which is based on an earlier version for estimating land surface albedo in clear-sky
cases [52]. The previous MODIS algorithm requires multiple observations as input for the optimization,
which makes the algorithm very time-consuming and hardly practical for global operational production.
The previous version of the cloud look-up table only considered water cloud, which introduces errors
where ice cloud is present. To improve the efficiency and accuracy, here we modified the algorithm
and extended it to estimate instantaneous and daily ISR and NSR from the Visible Infrared Imaging
Radiometer Suite (VIIRS) data and conducted a comprehensive global validation. VIIRS is onboard
Suomi National Polar-orbiting Partnership (Suomi NPP) and the Joint Polar Satellite System (JPSS)
polar satellites, and there is no radiation product publicly available currently.

Section 2 describes the data and methodology used in this research. Sections 3 and 4 analyzes the
validation results from, and Section 5 provides a summary.

2. Data and Methodology

2.1. Datasets Used in This Study

The VIIRS instrument provides observation continuity with MODIS. The VIIRS team provides a
suite of operational products, termed sensor data records (SDR). In this study, we used VIIRS SDR
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archive sets from National Oceanic and Atmospheric Administration (NOAA) Comprehensive Large
Array-data Stewardship System (CLASS) to estimate surface ISR in 2013. The VIIRS data from bands
1−11 were used in this study except for the two absorption bands (band 6 and 9) at the spatial resolution
of 750-m.

2.2. Validation Sites

Ground measurements from seven SURFRAD and BSRN sites during 2013 were used in this
study to validate ISR estimation. The recording cycle of SURFRAD and BSRN are both one minute.
The SURFRAD ISR was measured with Spectrolab and Eppley Pyranometer, with a documented error
of 5%. BSRN sites used CG4 (Kipp & Zonen) or PIR (Eppley) pyrgeometers for ISR measurements and
presented an error of about 5 W/m2. We averaged the observations of thirty minutes around the time
of the satellite overpass for instantaneous ISR validation to enhance the spatial representativeness of
each site [53] and averaged observations of each day for the daily ISR validation.

Tables 1 and 2 show the SURFRAD and 33 BSRN sites used in the validation. When validating
against BSRN measurements, we divided all sites into seven different areas, namely North America,
Europe, South America, Oceania, Asia, Africa, and Greenland. Figure 1 shows the spatial distribution
of the BSRN sites.

Table 1. SURFRAD sites used in the validation.

Site Name Latitude Longitude Elevation (m)

Fort Peck 48.30798 −105.10177 634
Sioux Falls 43.73431 −96.62334 473
Penn State 40.72033 −77.931 376
Bondville 40.05155 −88.37325 230
Boulder 40.12557 −105.23775 1689

Desert Rock 36.6232 −116.01962 1007
Goodwin Creek 34.2547 −89.8729 98

Table 2. BSRN sites used in the validation.

Area Site Name Latitude Longitude Elevation (m)

North America

BIL 36.605 −97.516 317
BON 40.0667 −88.3667 213
BOS 40.125 −105.237 1689
BOU 40.05 −105.007 1577
CLH 36.905 −75.713 37
DRA 36.626 −116.018 1007
E13 36.605 −97.485 318
FPE 48.3167 −105.1 634
GCR 34.2547 −89.8729 98
PSU 40.72 −77.9333 376
SXF 43.73 −96.62 473

Europe

CAB 51.9711 4.9267 0
CAM 50.2167 −5.3167 88
CAR 44.083 5.059 100
CNR 42.816 −1.601 471
LER 60.1389 −1.1847 80
LIN 52.21 14.122 2862
PAL 48.713 2.208 156

South America

BRB −15.601 −47.713 1023
FLO −27.6047 −48.5227 11
PTR −9.068 −40.319 387
SMS −29.4428 −53.8231 489
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Table 2. Cont.

Area Site Name Latitude Longitude Elevation (m)

Oceania

ASP −23.798 133.888 547
DAR −12.425 130.891 30
DWN −12.424 130.8925 32
LAU −45.045 169.689 350
MAN −2.058 147.425 6

Asia
FUA 33.5822 130.3764 3
ISH 24.3367 124.1644 5.7
XIA 39.754 116.962 32

Africa
GOB −23.5614 15.042 407
TAM 22.7903 5.5292 1385

Greenland ALE 82.49 −62.42 127
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Figure 1. SURFRAD (circles) and BSRN (squares) sites used for validation.

2.3. Algorithm Framework

The algorithm firstly optimizes surface and atmospheric parameters from TOA reflectance
and subsequently estimates ISR. Then we used the Wang and Liang method [49] to calculate daily
integrated ISR from VIIRS observations. We validated the results against field measurements from
seven SURFRAD sites and 33 BSRN sites globally. There are several major improvements over the
earlier version of the algorithm, including (1) integrated look-up table and optimization framework,
(2) calculation of net shortwave radiation as well, (3) adding the estimation of daily values, and (4)
extensive global validation. We produced global daily integrated ISR maps on 1 January, April, July,
and October 2018 as examples.

Figure 2 illustrates the framework of the algorithm. An optimization method has been used [52,54]
to estimate surface reflectance and broadband albedo. In our previous research, we developed a
similar approach for incident shortwave radiation estimation from MODIS data by revising the cost
function considering both satellite observations and optional constraints, including aerosol optical
depth (AOD), cloud optical depth (COD), surface reflectance products, and albedo climatology [51].
In this study, we adapted the algorithm for the estimation of ISR from VIIRS data by revising the band
configuration and the spectrum of radiation transfer simulation. An assumption is made here that
the surface reflectance is invariant during a short period (8 days in this research). Under cloudy sky
conditions, we used the surface reflectance calculated by the nearest previous clear observations as
surface input. The COD can then be optimized using radiative transfer models.
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In this study, atmospheric optical parameters such as spherical albedo, atmospheric downward/

upward transmittance, and path reflectance are required to calculate the cost function. We used
libRadtran [55] to simulate the parameters.

We used surface and atmospheric parameters to implement a forward simulation of TOA
reflectance using the radiative transfer model. The cost function is based on the difference between
simulated and observed TOA reflectance (Equations (1)–(3)):

J(X) =
(
Rest(X) −Robs(X)

)
O−1

(
Rest(X) −Robs(X)

)
+ Jc +

[
(A(X) −Aclm

)
B−1(A(X) −Aclm) (1)

Xclear = [BRF1, BRF2, . . . , BRFNB, AOD1, AOD2, . . . , AODNO ]T (2)

Xcloudy = [ COD1, COD2, . . . , CODNO , CER1, CER2, . . . , CERNO]
T (3)

Here, Robs and Rest refer to satellite-observed TOA reflectance and forward-simulated TOA
reflectance from the radiative transfer model. A and Aclm are the calculated albedo and the albedo
climatology, respectively. Xclear and Xcloudy are the parameters to be optimized under clear and cloudy
sky cases, respectively. O and B are the error matrices for the TOA reflectance and the climatology,
respectively. The albedo climatology covariance matrix B is determined from the multiyear satellite
albedo climatology uncertainty, while the TOA reflectance covariance matrix O is calculated from the
narrowband albedo’s contribution to the broadband albedo and the spectral reflectance magnitude. Jc is
a punishment component and set to a 100 if the TOA reflectance is an invalid value (negative or greater
than one). The shuffled complex evolution (SCE) method [56] was used to search for the optimum.

When the surface and atmospheric parameters reach an optimum, ISR F(µ0) and NSR Fn(µ0) are
then calculated using a radiative transfer model according to Equations (4)–(6):

F(µ0) = F0(µ0) +
rsρ

1− rsρ
µ0E0γ(µ0) (4)

F0(µ0) = Fdir(µ0) + Fdi f (µ0) (5)

Fn(µ0) = F(µ0) (1− α) (6)
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Here, F0(µ0) is the radiation without any contribution from the surface, while Fdir(µ0) and
Fdi f (µ0) denote the direct and diffuse parts, respectively. rs is the surface reflectance, ρ is the spherical
albedo, µ0 is the cosine of the solar zenith angle, E0 is the extraterrestrial solar radiation, and γ(µ0)

is the total transmittance. For each combination of geometry and optical depth, the F0(µ0), ρ and
µ0E0γ(µ0) were pre-calculated by radiative transfer simulation in the ISR spectrum range and stored
in a look-up table. α denotes the land surface broadband albedo, F(µ0) and Fn(µ0) denote surface ISR
and NSR, respectively.

Equations (4)–(6) are based on instantaneous observations. The daily ISR were then estimated
using the LUT-based algorithm by Wang et al. [57]. We calculated ISR every 30 min according to the
interpolation algorithm. Then, we calculated the average ISR for each day.

2.4. Atmospheric Look-Up Tables Improvements

Atmospheric optical parameters such as spherical albedo, atmospheric downward/upward
transmittance, and path reflectance are required to implement a forward simulation. To make the
algorithm more efficient, all the parameters were pre-calculated in representative geometries and
atmospheric conditions (AOD, cloud optical depth [COD] cloud effective radius [CER]). LibRadtran [55]
software was used for the generation of the LUT. The following values were used as entries in the
radiative transfer simulations: solar zenith angle (0◦–80◦, at 10◦ intervals), viewing zenith angle (0◦–80◦,
at 20◦ intervals), relative azimuth angle (0◦–180◦, at 30◦ intervals), AOD at 550 nm (0.01, 0.025, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0), surface elevation (0, 1, 2, 3 4, 5 km), and water vapor (0, 15, 30, 45,
60, 75, 90, 105 mm). COD (1, 3, 5, 10, 20, 40, 60, 80) and CER (3, 6, 9, 12 um) are set for water cloud
while CER (20, 30, 40, 50, 60, 70, 80 um) are set for ice cloud.

We used the continental-clean model to estimate ISR. For each specific solar/viewing geometry
and atmospheric parameter (AOD at 550 nm for clear-sky conditions, COD and CER for cloudy-
sky conditions), radiative transfer simulations generated path reflectance, upward/downward
transmittances, and spherical albedo for each of the seven VIIRS bands. We used actual site
elevation to estimate ISR at the SURFRAD and BSRN sites, and the Global 30 Arc-Second Elevation
(GTOPO30) [58,59] for the global ISR map. With the atmospheric LUT, we calculated the surface
broadband albedo and atmospheric index (AOD for clear-sky conditions, COD and CER for cloudy-sky
conditions) from the optimization process. For cloudy-sky cases, each observation was optimized using
both the water and ice cloud LUTs, of which the one with a smaller cost function result was chosen as
the result. ISR could then be calculated under certain geometries using the surface radiation LUT. In this
paper, we calculated the ISR for the spectral range of 280–2800 nm to match the field measurements.

2.5. Improvement of the Optimization Framework

In the previous MODIS algorithm, most of the unknown variables in the optimization process
were surface parameters while only one was for the atmospheric condition (AOD/COD). We prioritized
the unknown variables in this research to increase more atmospheric parameters.

The influence of ISR is much more associated with the atmospheric conditions, especially the
cloud conditions. Surface parameters also count for multiple scattering which also contributes to the
ISR. In this research, we tried to minimize the unknown surface variables to increase both the efficiency
and accuracy of the model.

We used principal component analysis (PCA) to analyze the surface spectral reflectance of the
nine VIIRS bands using the data from all the site measurements extracted from reflectance products.
Results show that the first two components explain more than 98 percent of the variations. In the
updated framework, we only use two free variables for the surface condition, which reduce the total
unknown variables to three in clear-sky conditions and four in cloudy-sky conditions.

The PCA could increase the efficiency with low errors introduced. The ISR is mainly determined
by the path flux (the first component in Equation (4)) and the multiple scattering part (the second
component in Equation (4)). The albedo climatology

[
(A(X) −Aclm

)
B−1(A(X) −Aclm)] in Equation (1)
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constrains the surface reflectance and albedo error. Over dark surfaces, such as forests, the multiple
scattering part is minimal in determining the overall ISR due to the low surface albedo. On the other
hand, over bright surfaces such as deserts, the principal components could explain much of the overall
variations due to relatively simple surface conditions.

Figure 3a illustrates the radiative transfer simulated maximum error over dark and bright surfaces
with the first two components at nadir (solar zenith angle = 0). The maximum possible differences at
nadir are calculated under different visibility conditions. The error is more massive when the cloud is
dense (optical depth greater than 80), and when dense aerosol (optical depth between 1 ~ 2, usually
results from a mixture of aerosol and cloud). In all cases, the induced error is less than 1.6 W/m2.
Figure 3b,c show the original spectral reflectance and the PCs from multiple sites over bright surfaces.
The PC1 explains the variation for spectral bands at a shorter wavelength (<1000 nm), while the PC2
explains the other bands.

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 23 

 

multiple scattering part is minimal in determining the overall ISR due to the low surface albedo. On 
the other hand, over bright surfaces such as deserts, the principal components could explain much of 
the overall variations due to relatively simple surface conditions. 

Figure 3a illustrates the radiative transfer simulated maximum error over dark and bright 
surfaces with the first two components at nadir (solar zenith angle = 0). The maximum possible 
differences at nadir are calculated under different visibility conditions. The error is more massive 
when the cloud is dense (optical depth greater than 80), and when dense aerosol (optical depth 
between 1 ~ 2, usually results from a mixture of aerosol and cloud). In all cases, the induced error is 
less than 1.6 W/m2. Figure 3b,c show the original spectral reflectance and the PCs from multiple sites 
over bright surfaces. The PC1 explains the variation for spectral bands at a shorter wavelength (<1000 
nm), while the PC2 explains the other bands. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3. Principal component analysis of the nine VIIRS spectral reflectance: (a) Simulated maximum 
differences in ISR estimation over dark and bright surfaces with the first two components; (b) Original 
spectral reflectance over bright surfaces; (c) Scores of PCA. 

 

Figure 3. Principal component analysis of the nine VIIRS spectral reflectance: (a) Simulated maximum
differences in ISR estimation over dark and bright surfaces with the first two components; (b) Original
spectral reflectance over bright surfaces; (c) Scores of PCA.



Remote Sens. 2020, 12, 4153 8 of 23

3. Results over SURFRAD Sites

3.1. Validation Results of Instantaneous ISR

The validation results of instantaneous ISR are shown in Figure 4 and Table 3. The ISR RMSE
ranges from 75.32 W/m2 to 94.66 W/m2 at the different sites while the bias ranges from −29.36 W/m2

to 9.21 W/m2. The overall RMSE and bias are 83.76 W/m2 and −3.49 W/m2, respectively. RMSEOrigin

denotes the results from the original optimization framework without the improvements. The updated
algorithm provides accuracy improvement at most of the SURFRAD sites and the overall result.
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Table 3. Validation results of instantaneous ISR at SURFRAD sites.

Site Name
R2 Bias RMSE RMSE Origin

Instantaneous Rs Unit: W/m2

Fort Peck 0.89 4.24 80.62 82.17
Sioux Falls 0.90 2.80 82.00 84.28
Penn State 0.88 9.21 94.66 98.03
Bondville 0.93 3.61 77.39 79.31
Boulder 0.92 −24.17 80.76 92.57

Desert Rock 0.92 −29.36 75.32 73.85
Goodwin Creek 0.89 11.88 93.01 96.18

All 0.91 −3.49 83.76 87.30

3.2. Validation Results of Instantaneous NSR

The validation results of instantaneous NSR are shown in Figure 5 and Table 4. The RMSE
ranges from 56.8 W/m2 to 80.87 W/m2 at the different sites while the bias ranges from −20.48 W/m2 to
14.6 W/m2. The overall RMSE and bias are 66.80 W/m2 and 0.62 W/m2, respectively.
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Table 4. Validation results of instantaneous NSR at SURFRAD sites.

Site Name R2 RMSE Bias

Instantaneous Net Rs Unit: W/m2

Fort Peck 0.94 58.63 2.47
Sioux Falls 0.93 65.5 4.83
Penn State 0.92 73.83 10.36
Bondville 0.96 56.8 4.71
Boulder 0.93 68.57 −17.18

Desert Rock 0.92 62.49 −20.48
Goodwin Creek 0.91 80.87 14.6

All 0.93 66.8 0.62

3.3. Validation Results of Daily ISR

The validation results of daily ISR are shown in Figure 6 and Table 5. The ISR RMSE ranges
from 24.40 W/m2 to 34.11 W/m2 at the different sites while the bias ranges from −8.60 to 10.59 W/m2.
The overall daily RMSE and bias are 27.78 W/m2 and −0.16 W/m2, respectively.
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Table 5. Validation results of daily ISR at SURFRAD sites.

Site Name R2 RMSE Bias

Daily Rs Unit: W/m2

Fort Peck 0.97 24.4 −0.06
Sioux Falls 0.97 24.7 −0.41
Penn State 0.95 31.13 −5.41
Bondville 0.97 26.5 −4.55
Boulder 0.94 31.37 7.49

Desert Rock 0.98 20.64 10.59
Goodwin Creek 0.95 34.11 −8.6

All 0.96 27.78 −0.16

3.4. Validation Results of Daily NSR

The validation results of daily NSR are shown in Figure 7 and Table 6. The RMSE ranges from
18.07 W/m2 to 30.31 W/m2 at the different sites while the bias ranges from –0.99 W/m2 to 4.51 W/m2.
The overall RMSE and bias are 23.51 W/m2 and 2.66 W/m2, respectively.
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Table 6. Validation results of daily NSR at SURFRAD sites.

Site Name R2 RMSE Bias

Daily Net Rs Unit: W/m2

Fort Peck 0.94 23.03 4.2
Sioux Falls 0.93 22.82 3.65
Penn State 0.93 22.14 2.77
Bondville 0.93 21.08 2.83
Boulder 0.86 30.31 1.49

Desert Rock 0.94 18.07 −0.99
Goodwin Creek 0.9 25.5 4.51

All 0.93 23.51 2.66
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4. Results over BSRN sites

4.1. Validation Results of Instantaneous ISR

The validation results of instantaneous ISR are shown in Figure 8, Tables 7 and 8. The ISR RMSE
in North America ranges from 95.41 W/m2 to 127.65 W/m2 at the different sites while the bias ranges
from −26.89 W/m2 to −1.55 W/m2. The overall RMSE and bias are 112.39 W/m2 and −14.05 W/m2,
respectively. The RMSE at BSRN sites is generally higher than that at SURFRAD sites even they are
close to each other.
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The ISR RMSE in Europe ranges from 86.72 W/m2 to 106.09 W/m2 at the different sites while
the bias ranges from −26.89 W/m2 to −1.55 W/m2. The overall RMSE and bias are 95.90 W/m2 and
9.48 W/m2, respectively.

The ISR RMSE in South America ranges from 111.01 W/m2 to 156.99 W/m2 at the different sites
while the bias ranges from −10.06 W/m2 to 26.04 W/m2. The overall RMSE and bias are 129.00 W/m2

and 4.29 W/m2, respectively.
The ISR RMSE in Oceania ranges from 89.48 W/m2 to 147.77 W/m2 at the different sites while

the bias ranges from −35.15 W/m2 to 47.89 W/m2. The overall RMSE and bias are 115.16 W/m2 and
−1.49 W/m2, respectively.

The ISR RMSE in Asia ranges from 109.98 W/m2 to 132.63 W/m2 at the different sites while
the bias ranges from 29.55 W/m2 to 43.23 W/m2. The overall RMSE and bias are 119.48 W/m2 and
34.09 W/m2, respectively.

The ISR RMSE in Africa ranges from 60.2 W/m2 to 109.39 W/m2 at the different sites while
the bias ranges from −53.23 W/m2 to −9.8 W/m2. The overall RMSE and bias are 83.36 W/m2 and
−27.11 W/m2, respectively.

There is only one site located in this Greenland area. The RMSE and bias are 74.28 W/m2 and
−40.71 W/m2, respectively.

The validation results of instantaneous ISR are shown in Figure 8, Tables 7 and 8. The ISR RMSE
in each area ranges from 83.36 W/m2 to 129 W/m2 at the different sites while the bias ranges from
−40.71 W/m2 to 9.48 W/m2. South America sites have the largest overall RMSE as there is more cloud
in this area. Greenland site has the smallest RMSE due to the high latitude and the low absolute value
of ISR. The overall RMSE and bias are 105.87 W/m2 and −3.79 W/m2, respectively.

Table 7. Validation results of instantaneous ISR at all BSRN sites.

Area Site Name RMSE (W/m2) Bias (W/m2)

North America

BIL 105.66 −6.08
BON 114.55 −13.23
BOS 127.65 −26.89
BOU 112.43 −14.37
CLH 113.15 −10.31
DRA 95.41 −24.46
E13 111.5 −7.8
FPE 109.86 −19.06
GCR 120.5 −1.55
PSU 110.28 −11.96
SXF 112.64 −16.17
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Table 7. Cont.

Area Site Name RMSE (W/m2) Bias (W/m2)

Europe

CAB 93.37 12.49
CAM 90.77 5.46
CAR 87.86 −5.5
CNR 102.18 13.52
LER 86.72 15.41
LIN 104.91 15.67
PAL 106.09 6.54

South America

BRB 148.95 −4.62
FLO 156.99 13.25
PTR 111.01 26.04
SMS 115.36 −10.06

Oceania

ASP 107.41 −34.06
DAR 123.81 17.92
DWN 121.35 30.29
LAU 89.48 −35.15
MAN 147.77 47.89

Asia
FUA 115.18 30.12
ISH 132.63 29.55
XIA 109.98 43.23

Africa
GOB 60.2 −9.8
TAM 109.39 −53.23

Greenland ALE 74.28 −40.71

All 105.87 −3.79

Table 8. Validation results of instantaneous ISR in different areas.

Area RMSE (W/m2) Bias (W/m2)

North America 112.39 −14.05
Europe 95.9 9.48

South America 129 4.29
Oceania 115.16 −1.49

Asia 119.48 34.09
Africa 83.36 −27.11

Greenland 74.28 −40.71
All 105.87 −3.79

4.2. Validation Results of Daily ISR

The validation results of daily ISR are shown in Figure 9, Tables 9 and 10. The ISR in North America
RMSE ranges from 26.41 W/m2 to 39.96 W/m2 at the different sites while the bias ranges from−8.89 W/m2

to 2.2 W/m2. The overall RMSE and bias are 34.57 W/m2 and −3.08 W/m2, respectively.
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Table 9. Validation results of daily ISR at all BSRN sites.

Area Site Name RMSE (W/m2) Bias (W/m2)

North America

BIL 32.2 1.74
BON 35.68 −2.35
BOS 39.96 −7.59
BOU 33.88 −3.87
CLH 33.88 −4.48
DRA 26.41 −8.89
E13 33.24 −0.45
FPE 34.95 −5.05
GCR 38.47 2.2
PSU 33.13 −2.61
SXF 36.03 −3.76

Europe

CAB 27.93 6.12
CAM 26.95 4.46
CAR 27.81 −0.35
CNR 30.96 5.02
LER 25.4 6.97
LIN 32.69 6.86
PAL 33.07 4.32

South America

BRB 51.55 0.4
FLO 55.09 4.68
PTR 37.4 9.4
SMS 34.13 −3.05

Oceania

ASP 25.66 −7.44
DAR 30.33 3.61
DWN 29.41 5.38
LAU 17.41 −6.49
MAN 34.63 11.02

Asia
FUA 27.8 9.13
ISH 34.04 7.78
XIA 30.24 14.53

Africa
GOB 18.3 −3.52
TAM 40.56 −17.53

Greenland ALE 39.75 −27.06

All 32.76 0.29
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Table 10. Validation results of daily ISR in different areas.

Area RMSE (W/m2) Bias (W/m2)

North America 34.57 −3.08
Europe 29.36 4.74

South America 42.98 2.52
Oceania 27.41 0.52

Asia 30.74 10.24
Africa 29.08 −8.98

Greenland 39.75 −27.06
All 32.76 0.29

The ISR in Europe RMSE ranges from 25.4 W/m2 to 33.07 W/m2 at the different sites while
the bias ranges from −0.35 W/m2 to 6.97 W/m2. The overall RMSE and bias are 29.36 W/m2 and
4.74 W/m2, respectively.

The ISR RMSE in South America ranges from 34.13 W/m2 to 55.09 W/m2 at the different sites
while the bias ranges from −3.05 W/m2 to 9.4 W/m2. The overall RMSE and bias are 42.98 W/m2 and
2.52 W/m2, respectively.

The ISR RMSE in Oceania ranges from 17.41 W/m2 to 34.63 W/m2 at the different sites while
the bias ranges from −7.44 W/m2 to 11.02 W/m2. The overall RMSE and bias are 27.41 W/m2 and
0.52 W/m2, respectively.

The ISR RMSE in Asia ranges from 27.8 W/m2 to 34.04 W/m2 at the different sites while
the bias ranges from 7.78 W/m2 to 14.53 W/m2. The overall RMSE and bias are 30.74 W/m2 and
10.24 W/m2, respectively.

The ISR RMSE in Africa ranges from 18.3 W/m2 to 40.56 W/m2 at the different sites while
the bias ranges from −17.53 W/m2 to−3.52 W/m2. The overall RMSE and bias are 29.08 W/m2 and
−8.98 W/m2, respectively.

The RMSE and bias in the Greenland area site are 39.75 W/m2 and −27.06 W/m2, respectively.
The validation results of daily ISR are shown in Figure 9, Tables 9 and 10. The ISR RMSE in

each area ranges from 28.49 W/m2 to 39.75 W/m2 at the different sites while the bias ranges from
−27.06 W/m2 to 10.24 W/m2. The overall RMSE and bias are 32.75 W/m2 and 0.29 W/m2, respectively.

5. Discussion and Conclusions

5.1. Spatial and Temporal Analysis

Figure 10 shows the seasonal variation of relative biases and RMSEs over the different regions.
Most of the northern hemisphere sites, including North America, Europe, and Asia sites overestimate
ISR in summer and underestimate in winter. Tropical and sub-tropical sites, including South America
and Oceania sites, show no significant seasonal changes on biases. Greenland site shows significant
underestimation as the algorithm underestimates the cloud optical depth due to the snow land surface,
which should be improved in future research. Most of the sites have larger relative RMSE in winter,
as the absolute ISR values are usually smaller in winter.
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Figures 11 and 12 show the spatial patterns of the validation results for instantaneous and daily
ISR, respectively. Red circles denote sites with positive biases while blue circles denote sites with
negative biases. The larger the diameters of the circles, the larger the RMSEs are and vice versa. Overall,
sites located in lower latitudes and located in islands have larger RMSEs compared to other sites.
The algorithm tends to underestimate ISR over North America and overestimate ISR over Europe and
Asia. Figure 13. shows the VIIRS daily ISR map on 1 Jan. 2018.
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5.2. Discussion

The PCA performed to the surface reflectance could reduce the optimization framework’s unknown
variables, providing a significant improvement in efficiency and slight inaccuracy. Many previous
studies used surface reflectance from single or multiple spectral bands to estimate surface ISR.
Traditional single-band LUT algorithms tend to assume a single condition that the band used (often the
blue band) itself can represent the surface condition and determine the atmosphere’s clearness.
On the other hand, the optimization algorithm using all shortwave spectral bands is time-consuming.
The PCA can extract critical information for the surface condition. Apart from improving the efficiency,
the approach can also improve the accuracy slightly, as fewer free variables bring less uncertainty to
the optimization process.

The most significant improvement is at the Table Mountain site at Boulder (CO, USA). The cloud
condition in the mountainous area here is the most complicated among the SURFRAD sites. Overall,
sites with dark surfaces have slight improvement while not at the sites with bright surfaces, such as
Desert Rock. Further improvements are required to apply this algorithm over the bright surfaces.
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Boundaries between different orbits over southern Africa and Australia in the global daily map
indicate that estimating daily averaged ISR from instantaneous observations is difficult. Further work
is required in generating global operational products.

5.3. Conclusions

This research modified the optimization based ISR estimation algorithm and applied it to VIIRS
data. We validated instantaneous and daily ISR globally over SURFRAD and BSRN sites and performed
the spatial and temporal analysis.

The ISR products are still not available from VIIRS observation. Here we present a framework
for estimating instantaneous and daily ISR products from VIIRS observation. The algorithm was
used for MODIS instantaneous ISR estimation. We adapted and extended the algorithm for VIIRS
data. We validated the results at seven SURFRAD and 33 BSRN sites. The RMSE over SURFRAD sites
were 83.76 W/m2 for instantaneous ISR and 66.80 W/m2 and instantaneous NSR. Daily results showed
27.78 W/m2 and 23.51 W/m2 for ISR and NSR, respectively. Validation results at BSRN sites present
RMSEs of 105.87 W/m2 for instantaneous ISR and 32.76 W/m2 for daily ISR.

The algorithm can estimate instantaneous, and daily ISR from VIIRS data at a similar or
better accuracy than existing products and can provide much higher spatial resolution. However,
the optimization-based method generated greater uncertainty compared to that of the previous MODIS
algorithm, mainly because the latter combines observations from the local morning and local afternoon.
Further research can be undertaken to improve the cost function and the optimization framework in
the case of a lack of high-level products as constraints and apply the algorithm in the global operational
production of 375/750 m resolution.
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